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a b s t r a c t 

We performed a systematic review of studies focusing on the automatic prediction of the progression 

of mild cognitive impairment to Alzheimer’s disease (AD) dementia, and a quantitative analysis of the 

methodological choices impacting performance. This review included 172 articles, from which 234 exper- 

iments were extracted. For each of them, we reported the used data set, the feature types, the algorithm 

type, performance and potential methodological issues. The impact of these characteristics on the perfor- 

mance was evaluated using a multivariate mixed effect linear regressions. We found that using cognitive, 

fluorodeoxyglucose-positron emission tomography or potentially electroencephalography and magnetoen- 

cephalography variables significantly improved predictive performance compared to not including them, 

whereas including other modalities, in particular T1 magnetic resonance imaging, did not show a sig- 

nificant effect. The good performance of cognitive assessments questions the wide use of imaging for 

predicting the progression to AD and advocates for exploring further fine domain-specific cognitive as- 

sessments. We also identified several methodological issues, including the absence of a test set, or its 

use for feature selection or parameter tuning in nearly a fourth of the papers. Other issues, found in 

15% of the studies, cast doubts on the relevance of the method to clinical practice. We also highlight 

that short-term predictions are likely not to be better than predicting that subjects stay stable over time. 

These issues highlight the importance of adhering to good practices for the use of machine learning as a 

decision support system for the clinical practice. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The early diagnosis of Alzheimer’s disease (AD) is crucial for pa- 

ient care and treatment. Machine learning algorithms have been 

sed to perform automatic diagnosis and predict the current clin- 
∗ Corresponding author at: Institut du Cerveau et de la Moelle épinière, ICM, F- 
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cal status at an individual level, mainly in research cohorts. Indi- 

iduals suffering from mild cognitive impairment (MCI) are how- 

ver likely to have a change of clinical status in the coming years, 

nd to be diagnosed with AD or another form of dementia. Distin- 

uishing between the MCI individuals that will remain MCI (MCI 

table, or sMCI) from those who will progress to AD (pMCI) is an 

mportant task, that can allow for the early care and treatment of 

MCI patients. In this article, we will review methods that have 

een proposed to automatically predict if an MCI patient will de- 

elop AD dementia in the future by performing a careful reading of 

https://doi.org/10.1016/j.media.2020.101848
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101848&domain=pdf
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ublished articles, and compare them through a quantitative anal- 

sis. 

The application of machine learning to precision medicine is an 

merging field, at the cross roads of different disciplines, such as 

omputer science, radiology or neurology. Researchers working on 

he topic usually come from one field or the other, and therefore 

o not have all the skills that are necessary to design methods that 

ould be efficient and following machine learning best practices, 

hile being understandable and useful to clinicians. 

Reviews of the automatic prediction of the patient’s current di- 

gnosis from clinical or imaging variables acquired at the same 

ime in the context of AD have already been published, but none 

pecifically target the prediction of progression from MCI to AD 

ementia. They focus on the use of magnetic resonance imag- 

ng (MRI) ( Falahati et al., 2014; Leandrou et al., 2018 ), or of neu-

oimaging data more broadly ( Rathore et al., 2017; Arbabshirani 

t al., 2017; Haller et al., 2011; Sarica et al., 2017 ). Several of

hem are systematic reviews such as Arbabshirani et al. (2017) with 

12 studies on AD, Rathore et al. (2017) with 81 studies, 

alahati et al. (2014) with 50 studies and Sarica et al. (2017) with 

2 studies. They often gather the findings of each individual article 

nd compare them, but no quantitative analysis of performance is 

roposed. 

We propose here to perform a systematic and quantitative re- 

iew of studies predicting the evolution of clinical diagnosis in in- 

ividuals with MCI. We will report different quantitative and qual- 

tative characteristics of the proposed method such as the sample 

ize, type of algorithm, reported accuracy, identification of possible 

ssues. We will then analyze this data to identify the characteristics 

hich impact performance the most, and list several recommen- 

ations to ensure that the performance is well estimated, and that 

he algorithm would have the best chance to be useful in clinical 

ractice. 

. Materials and method 

.1. Selection process 

The query used to find the relevant articles was composed of 4 

arts: 

1. As we study the progression from MCI to AD, the words MCI 

and AD should be present in the abstract ; 

2. We removed the articles predicting only the patient’s cur- 

rent diagnosis using variables acquired at the same time 

point by ensuring the words “prediction” and “progression”

or associated terms are present in the abstract ; 

3. A performance measure should be mentioned ; 

4. A machine learning algorithm or classification related key- 

word should be in the abstract. This fourth part ensures the 

selected articles make individual predictions and reduces the 

presence of group analyses. 

The full query can be found in Appendix A.1. Running it on Sco- 

us on the 13th of December 2018 resulted in 330 articles. The 

bstracts were read to remove irrelevant articles, including studies 

f the progression of cognitively normal individuals to MCI, auto- 

atic diagnosis methods, review articles and group analyses. Af- 

er this selection 206 articles were identified. As this first selection 

as quite conservative, 34 additional articles were removed from 

he selection for similar reasons during the reading process, leav- 

ng 172 studied articles which are listed in Appendix B. The selec- 

ion process is described in Figure S1 in Appendix A.2. 
2 
.2. Reading process 

For each study, the number of individuals was first assessed 

nd noted. Only studies including more than 30 sMCI and 30 pMCI 

111 articles) were then fully read, as we considered that experi- 

nce using fewer than 30 individuals cannot provide robust esti- 

ates of performance. Articles with fewer than 30 individuals in 

ach category were still considered when studying the evolution 

f the number of articles with time, and of the number of indi- 

iduals per article with time. The studies including enough indi- 

iduals were then analyzed by one of the 19 readers participating 

n this review, and a final curation was performed by one of the 

uthors (MA) to ensure homogeneity. 36 items, of which a list is 

vailable in Appendix A.3, were reported for each study, including 

he used features, the cohort, the method (time to prediction, algo- 

ithm, feature selection, feature processing), the evaluation frame- 

ork and the performance measures, as well as identified biases in 

he method. When several experiments were available in an arti- 

le, they were all reported in the table. A total of 234 experiments 

as thus studied. 

A table containing the articles included in the review and the 

eported values can be found on https://gitlab.com/icm-institute/ 

ramislab/mci-progression-review . The issues identified in each ar- 

icle were removed from this open-access table, to avoid negatively 

ointing at studies. They can be made available if requested to the 

orresponding author. 

.3. Quality check 

Several methodological issues were identified during the read- 

ng process. This list of issues was not previously defined, it has 

een established as issues were encountered in the various stud- 

es. We identified the following list of issues: 

• Lack of a test data set: use of the same data set for training 

and testing the algorithm, without splitting the data set or us- 

ing any kind of cross-validation method. The performance com- 

puted this way is the training performance, whereas a test per- 

formance, computed on a different set of individuals, is nec- 

essary to measure the performance that could be obtained on 

another data set (i.e. generalizability of the method). 
• Automatic feature selection performed on the whole data set. 

When a large number of features is available, automatic feature 

selection can be performed in order to identify the most rel- 

evant features and use them as input. A variety of automatic 

algorithms exist to do this. Some studies performed this auto- 

matic feature selection on the whole data set, before splitting 

it into a training and a test set or performing cross-validation. 

An example of this issue is, first, using t-tests to identify fea- 

tures that best separate pMCI from sMCI, using the whole data 

set, then splitting the data set into a training and a test set, to 

respectively train the classification algorithm and evaluate its 

performance. In this example, the individuals from the test set 

have been used to perform the automatic feature selection and 

choose the most relevant features. This is an issue, as individ- 

uals in the test set should be used for performance evaluation 

only. 
• Other data-leakage. More broadly, data leakage is the use of 

data from the test set outside of performance evaluation. Us- 

ing the test data set for parameter tuning, or for choosing the 

best data set out of a large number of experiments, are two 

common examples of data leakage. 
• Feature embedding performed on the whole data set. Feature 

embedding (for example principal components analysis) trans- 

forms the input features into a lower-dimension feature space. 

It is often used to reduce the input dimension when many fea- 

https://gitlab.com/icm-institute/aramislab/mci-progression-review
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tures are available, but it does not use the individual labels 

(sMCI/pMCI) to do so, as feature selection often does. This is- 

sue is therefore similar to performing feature selection on the 

whole data set, except that only the features of the test indi- 

viduals are used, and not their labels. 
• Use of the date of AD diagnosis to select the input visit of pMCI

individuals. An example of this issue is using the visit 3 years 

before progression to AD for pMCI subjects, and the first avail- 

able visit for sMCI subjects, to predict the progression to AD at 

3 years, even for testing the method. In this case, the date of 

progression to AD of the individuals of the test set was used 

to select the input visit, which is not possible in clinical prac- 

tice, as the date of progression is not known. Such experimen- 

tal designs are also likely to introduce biases between pMCI and 

sMCI subjects in age or in total observation periods for instance, 

which may lead to a better performance than what could be 

achieved in a real-life scenario. 

Other methodological issues, not belonging to these categories, 

ere also reported, such as incompatibility between different re- 

orted measures. The articles in which at least one of these issues 

as identified were not used when analyzing the performance 

f the methods. Only articles with no reported issues were used, 

owever it is possible that some issues could not be detected from 

he elements given in the articles, and that some issues were not 

dentified during reading. 

.4. Statistical analysis 

.4.1. General model 

We studied the impact of various method characteristics (such 

s input feature and algorithm) on the performance of the classifi- 

ation task, separating sMCI from pMCI individuals. Several exper- 

ments were reported for each article, so we had to account for 

he dependency between experiments coming from the same arti- 

le. In order to do so, we used linear mixed-effects models with a 

andom intercept on the article. 

For the model to have enough power, we grouped the char- 

cteristics in a hierarchical manner, creating broad categories that 

an be expanded into finer ones several times. The categories were 

reated as such : 

• linear models: linear regression, orthogonal partial least square 

(OPLS), linear discriminant analysis (LDA), manual threshold 

• generalized linear models: linear support vector machine(SVM), 

logistic regression, survival analysis 
• non-linear models: random forest, multi-kernel learning, non- 

linear SVM, bayesian methods, neural networks, others 
• imaging features 

• T1 MRI 
• region-based features on selected regions of interest (T1- 

ROI) 
• region-based features on the whole brain 

• voxel-based features 
• positron emission tomography (PET) 

• fluorodeoxyglucose (FDG) PET 
• Amyloid PET 

• white matter hyper-intensities 
• electroencephalography (EEG) or magnetoencephalography 

(MEG) 
• diffusion tensor imaging (DTI) 
• fMRI 

• cerebrospinal fluid (CSF) biomarkers 
• cognitive features 

• general cognitive features 
• domain-targeted cognitive features 
• new, home-made cognitive features 
b

3 
• socio-demographic and genetic features 
• socio-demographic features 

• age 
• gender 

• Apolipoprotein E (APOE) 
• other features 
• longitudinal approach 

• use of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

data set 
• number of subjects 

A first model was created with the broadest categories, and we 

sed a two-sided t-test on the regression coefficients to identify 

he categories of characteristics which had a significant impact on 

erformance. The next model was then created by expanding only 

he significant categories and keeping the non-significant one at a 

oarse level. The expansion and the creation of new models was 

epeated until we reached a model for which all significant coeffi- 

ients belonged to categories that could not be expanded further. 

e report the results of the final model in 4 . The intermediate 

odels leading to the final one are reported in section Appendix 

.4.1 of Supplementary Materials. 

For each model, we only used the characteristics which were 

ound in more than one article with an associated performance 

easure and with no identified issue. The performance measure 

sed for these models was the area under the receiver operat- 

ng characteristic (ROC) curve (AUC), experiments with no reported 

UC were therefore not taken into account. 

Only the experiments with no identified methodological issues 

ere included in the model. This process was performed twice: 

nce using all experiments without issues, and once using only the 

xperiments performed on the ADNI database. 

The p -values corrected for multiple comparisons were obtained 

y using the Benjamini-Hochberg procedure. 

.4.2. Individual feature models 

We wanted to test whether T1 MRI, cognitive or FDG PET fea- 

ures are predictors of better performance if used alone or in com- 

ination with other features. To this purpose, for a given feature 

ype F , we selected the experiments using this feature type and 

hat had a reported AUC and no methodological issue. We then 

sed a linear mixed-effect model, defined as: 

UC i = α ∗ ηi + β + βarticle i 

here i is the experiment, article i is the article to which the ex- 

eriment belongs (as several experiments can be reported in each 

rticle), and ηi is 0 when the experiment uses only the studied 

eature type F and 1 when it uses other feature types as well. We 

sed a two-sided t-test on α to determine if including other fea- 

ure types significantly changed the performance compared to us- 

ng F alone. 

This analysis was performed for F being: (a) T1 MRI features, (b) 

ognitive features, (c) FDG PET features. These were the features 

elected for the final general model as explained in Section 2.4.1 , 

hat have been used alone in at least 2 reported experiments, and 

hat have been used in combination with other features in at least 

 experiments as well. Cognitive features were not divided into 

ubsets so as to study the effect of cognitive assessments as a 

hole. 

. Descriptive analysis 

.1. A recent trend 

Fig. 1 a shows that the number of articles published each year 

n the prediction of the progression of MCI to AD dementia has 

een steadily increasing since 2010. 
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Fig. 1. Recent trends. (a) Evolution of number of article per year (in red) and of 

the number of individuals per article with time (in blue). (b) Evolution of the area 

under the ROC (receiver operating characteristic) curve (AUC) with time. The AUC 

of each article is represented by a dot. The AUC of articles published the same year 

is represented as box-plots. The plain line corresponds to the regression of the AUC 

against time. 

Fig. 1. Continued 
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Fig. 1 a also shows that the number of individuals used for 

he experiments is increasing over time ( p = 10 −5 , slope of 12.15

ubjects per year, R 2 = 0 . 10 ). 84.6% of articles used data of the

lzheimer’s Disease Neuroimaging Initiative (ADNI) study. Start- 

ng in 2004, this multicenter longitudinal study provides multiple 

odalities for the early detection of AD. As the recruitment of this 

argely used cohort is still ongoing, it is not surprising to see the 

umber of included individuals increasing over the years. Studies 

ften select individuals with a minimal follow-up time, of 3 years 

or example, and over the years more and more MCI individuals 

rom the ADNI cohort fulfill these criteria, so more individuals can 

e included. 

As shown in Fig. 1 b, the reported AUC are also increasing over 

ime ( p = 0 . 045 , slope of 1.15 points of AUC per year), which can

ave multiple explanations. First, as new studies often compare 

heir performance with those of previous methods, they tend to be 

ublished only when the obtained results seem competitive com- 

ared to previous ones. A more optimistic interpretation would 

e that algorithms tend to improve, and that newly available fea- 

ures might have a better predictive power. It has also been shown 

 Ansart et al., 2019; Domingos, 2012 ) that having a larger data set

eads to a higher performance, so there may be a link between the 

ncrease in data set size and the increase in performance. 
4 
.2. Features 

T1 MRI, cognition and socio-demographic features are used in 

espectively 69.2%, 43.2% and 33.8% of experiments. On the other 

and, FDG PET, APOE and CSF AD biomarkers are used in 15 to 

0% of experiments, and the other studied features (white mat- 

er hyper-intensities, EEG, MEG, PET amyloid, amyloid binary sta- 

us without considering the PET or CSF value, DTI and PET Tau) are 

sed in fewer than 10% of experiments. No study using functional 

RI has been identified. 

Studies using T1 MRI mainly use selected regions of interest 

46.8%), whereas 34.7% use the whole brain, separated into re- 

ions of interest, and 18.5% use voxel features. Studies using neuro- 

sychological tests mainly use aggregated tests evaluating multiple 

omains of cognition (51.2% of them), and 37.4% of them combine 

ggregated tests with domain-specific ones. Seven experiments use 

ew or home-made cognitive tests. 35.7% of experiments use only 

1 MRI (apart from socio-demographic features), and 15% use cog- 

ition only. 

The prevalence of T1 MRI does not seem surprising, as re- 

earchers working on automatic diagnosis often come from the 

edical imaging community, and T1 MRI is the most widely avail- 

ble modality. The prevalence of the imaging community can also 

xplain the choice of cognitive features, and why more detailed 

nd targeted cognitive tests are not used as much as more general 

nd more well-known ones. 

.3. Algorithm 

Support vector machines (SVM) and logistic regressions are the 

ost used algorithms, being used in respectively 32.6% and 15.0% 

f experiments. Among the experiments using an SVM, 63.2% use a 

on-linear kernel, 30.3% use a linear kernel and 6.6% do not men- 

ion the used kernel. Other algorithms are used in fewer than 10% 

f cases. Fig. 2 shows the evolution of the algorithm use over time. 

The high proportion of methods using an SVM has already 

een shown for the prediction of the current diagnosis in 

alahati et al. (2014) and Rathore et al. (2017) , it is therefore not 

urprising that this algorithm is also commonly used for the pre- 

iction of future diagnosis. We see that random forests started be- 

ng used around 2014, but the proportion of methods using this 

lgorithm, even recently, stays low compared to the proportion of 

ethods using an SVM. Neural networks started being used dur- 

ng the last two years, as it can be seen in Fig. 2 , and we can as-

ume the phenomenon has been too recent to be visible just yet 

n the field. Overall, even if the proportion of SVM has been de- 

reasing until 2013, the field has not been so prompt to use new 

lgorithms as one could have expected. A possible explanation is 

hat the choice of algorithm does not significantly impact perfor- 

ance. 

.4. Validation method 

For evaluating their performance, 29.1 % of experiments use a 

0-fold, and 12.8% use a k-fold with k different from 10. Leave-one 

ndividual out is also quite popular, being used in 17.5% of cases. 

e noted that 7.3% of experiments were trained and tested on the 

ame individuals, and 7.3% train the method on a first cohort and 

est it on a different one. 

It should be kept in mind when comparing the performance 

f different studies that the cross-validation methods can impact 

he performance. Using a larger training set and smaller test set 

s more favorable, hence the same method might result in a bet- 

er performance when evaluated using a leave-one out validation 

han using a 10-fold validation, as shown in Lin et al. (2018) . Bias

nd variance also vary across validation methods ( Efron, 1983 ). 
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Fig. 2. Evolution of the use of various algorithms with time. SVM with unknown kernel are simply noted as ”SVM”. OPLS: orthogonal partial least square; SVM: support 

vector machine. 

Table 1 

Impact of method characteristics. This table shows the coefficients obtained using the linear mixed- 

effect model described in Section 2.4.1 on all experiments, the associated p -values and corrected p - 

values. The last columns shows the number of experiments using the given characteristic, out of the 

120 experiments included in the model. Benjamini-Hochberg procedure was applied to get corrected p - 

values. coeff.:coefficient of the characteristics in the mixed effect model; FDG: fluorodeoxyglucose; PET: 

positron emission tomography; EEG: electroencephalography; MEG: magnetoencephalography; APOE: 

Apolipoprotein E; ADNI: Alzheimer’s Disease Neuroimaging Initiative; NA: not applicable. 

Characteristic coeff. p -value corrected p -value number of exp. 

intercept 78 0 0 NA 

linear model −0.47 0.79 0.94 23 

generalized linear model 0.19 0.89 0.96 28 

non linear model 0.83 0.55 0.79 50 

T1 features 0.92 0.26 0.76 77 

amyloid PET 1.3 0.35 0.79 5 

FDG PET 2.6 0.023 0.13 24 

white matter hyper-intensities −0.58 0.49 0.79 3 

EEG/MEG 3.4 2.9 ∗10 −03 0.029 5 

general cognitive features −0.14 0.91 0.96 49 

domain targeted cognitive features 2.6 0.026 0.13 25 

new or specific cognitive features 0.89 0.52 0.79 2 

socio-demographic features 1.2 0.43 0.79 43 

APOE 2.27 0.049 0.19 26 

biomarkers 0.75 0.39 0.79 19 

other features 0.53 0.54 0.79 12 

longitudinal 0.25 0.80 0.95 13 

ADNI 0.011 0.99 0.99 106 

number of subjects −0.39 0.76 0.94 NA 

individual intercept NA 0.072 0.24 NA 
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aroquaux et al. (2017) also studied the impact of the cross- 

alidation strategy on a range of classification tasks performed on 

MRI and MEG data sets, and showed that differences in perfor- 

ance tend to be smaller than the variance of the estimated per- 

ormance using a cross-validation method, mitigating the impor- 

ance of the choice of cross-validation strategy. This study still 

arns against the use of leave-one-out validation, leading to less 

table estimates. 

Reporting variance or confidence intervals is an important best 

ractice to compare results from different studies and experiments. 

e did not collect this information, and further work regarding the 

doption of this practice could complete this study. 

. Performance analyses 

The results of the linear mixed-effect model used to model the 

UC based on the method characteristics are shown in Table 1 , 

nd the details of the intermediate models can be found in sec- 

ion Appendix A.4.1 of Supplementary Materials. The performance 
5 
s significantly better when using EEG and MEG (coefficient = 3.4, 

p = 3 ∗ 10 −3 ), domain-targeted cognitive features (coefficient = 2.6, 

p = 0 . 026 ), FDG PET (coefficient = 2.2, p = 0 . 023 ) or APOE (coeffi-

ient = 2.3, p = 0 . 049 ). The use of the ADNI cohort and of lon-

itudinal data are not shown to be significant. The impact of the 

lgorithm type and of the number of subjects are not shown to be 

ignificant either. 

We also run the performance analysis using only the experi- 

ents performed on the ADNI cohort. The only characteristics with 

 significant impact on the AUC are the use of T1-ROI features 

coefficient = 1.7, p = 0 . 014 ) (and not the other T1-based features

hich are regions based features on the whole brain and voxel- 

ased features), FDG PET features (coefficient = 4.4, p < 1 ∗ 10 −7 ) 

nd domain-targeted cognitive features (coefficient = 2.4, p = 9 ∗
0 −3 ). The complete results can be found in section Appendix A.4.2 

f Supplementary Materials. 

We considered the impact of using each feature alone com- 

ared to a combination of them. It is significantly better to com- 

ine T1 MRI with other features than to use it solely (coeffi- 
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ient = 5.5, p = 9 ∗ 10 −3 ). The effect is not significant for cogni-

ion (coefficient = 3.0, p = 0 . 19 ) and FDG PET (coefficient = −6 . 1 ,

p = 0 . 38 ). 

.1. Cognition 

Cognitive variables can be easily collected in clinical rou- 

ine, at a low cost, and they are proven to increase the 

erformance of the methods, so their use should be encour- 

ged. This finding is consistent with comparisons performed 

n several studies. Minhas et al. (2018) , Kauppi et al. (2018) , 

rdekani et al. (2017) , Tong et al. (2017) , Gavidia- 

ovadilla et al. (2017) , Moradi et al. (2015) , Hall et al. (2015) ,

leisher et al. (2008) showed that using cognition and T1 MRI 

erformed better than using T1 MRI only. Dukart et al. (2015) , 

ui et al. (2011) , Thung et al. (2018) , Li et al. (2018) showed that

dding cognition to other modalities also improved the results. 

More surprisingly, we showed that using other modalities does 

ot significantly improve the results compared to using cognition 

nly. Although Fleisher et al. (2008) shows that using T1 MRI in 

ddition to cognition does not improve the performance compared 

o using cognition only, several studies show the opposite on var- 

ous modalities ( Samper-Gonzalez et al., 2019; Moradi et al., 2015; 

rdekani et al., 2017; Li et al., 2018; Kauppi et al., 2018 ). However,

hen taking all studies into account, it appears that the improve- 

ent one gains by including other modalities along with cogni- 

ive variables is not significant. As the cost of collecting cognitive 

ariables compared to performing an MRI or a FDG PET is quite 

ow, the non-significant improvement in performance might not 

e worth the cost, logistics and patient inconvenience arising from 

he collection of other modalities. Methods focusing on cognition 

nly, such as proposed by Johnson et al. (2014) , should therefore 

e further explored. Such methods should include domain-specific 

ognitive scores, which have shown to increase the performance. 

.2. Medical imaging and biomarkers 

Imaging modalities are not as widely available as cognitive fea- 

ures, but they can represent a good opportunity to better under- 

tand the disease process by showing the changes that appear be- 

ore the individuals progress to AD dementia. 

Among the used imaging modalities, we showed that using FDG 

ET leads to a better performance. Using T1-ROI features also leads 

o a better performance on the ADNI experiments, but this effect 

s not significant when considering all experiments. All the exper- 

ments using T1 MRI are performed on the ADNI database, so one 

an assume the effect on performance is small and is diluted when 

onsidering all experiments instead of the experiments performed 

n ADNI. Even considering the ADNI experiments, the effect of us- 

ng T1-ROI features is 2.6 times smaller than the effect of using 

DG PET, and 1.45 times smaller than the effect of using cognitive 

eatures. We also showed that using T1 MRI features alone per- 

orms significantly worse than using other features as well. Over 

ll, T1 MRI features should not be used alone and PET images could 

epresent a better alternative for the imaging community. Simi- 

ar observations have been made by Samper-Gonzalez et al. (2018) . 

DG PET was included as a supportive feature in AD diagnosis cri- 

eria in 2007 ( Dubois et al., 2007 ), and although it was removed

 along with structural MRI - from IWG-2 diagnostic criteria in 

014, Dubois et al. (2014) stressed that FDG PET can be useful 

o differentiate between AD and other types of dementia and to 

easure disease progression. According to the model hypothesized 

n ( Jack et al., 2010a ) changes in FDG PET appear earlier in the

D process than changes in structural MRI, which has been cor- 

oborated by different quantitative studies ( Chetelat et al., 2007; 
6 
eiman et al., 1998; Jagust et al., 2006 ). These changes might al- 

eady be visible in MCI individuals several years before their pro- 

ression to AD, which can explain why FDG PET is more predictive 

f this progression. 

Only one method using Tau PET has been identified in this re- 

iew so we could not evaluate the impact on performance. This 

ew modality should also be affected early in the disease process, 

nd could therefore represent great hopes for the imaging com- 

unity. However, surprisingly, Amyloid PET or CSF value, which is 

lso one of the earliest markers, did not have a significant impact 

n the prediction performance. Although amyloid load saturates 

everal years before symptom onset ( Jack et al., 2010b; Yau et al., 

015 ), several studies show that MCI individuals who are amyloid 

ositive are more likely to convert to dementia in the next 2 to 

 years than those who are amyloid negative ( Landau et al., 2012; 

ack et al., 2010b; Okello et al., 2009 ). 

The use of EEG or MEG has a significant impact on the per- 

ormance. However, only 5 experiments using these features were 

ncluded in the model, it is therefore difficult to conclude if this ef- 

ect is real, and if it is not due to methodological issues that have 

ot been identified during the quality check. 

.3. Longitudinal data 

Longitudinal data could give a better view of the evolution of 

he patient, and hence be more predictive of the progression to AD 

han cross-sectional data. Nonetheless, we did not find the use of 

ongitudinal data to have a significant effect on the performance. 

imilar findings are reported in Aksman (2017) for the classifica- 

ion of AD and in Schuster et al. (2015) for progressive diseases in 

eneral. Longitudinal analyses are more difficult to design in age- 

elated diseases since there is no temporal marker of disease pro- 

ression especially before diagnosis. Patients are also seen at dif- 

erent time-points and not all features are acquired at each visit, 

eading to many missing values. Methodologies for such designs 

re more exploratory than for cross-sectional approaches ( Schiratti 

t al., 2015; Venkatraghavan et al., 2019 ) 

.4. Algorithm 

Table 1 shows that the choice of algorithm has no significant 

mpact on performance. Even if non-linear models seem to be as- 

ociated to a higher coefficient (0.83) than linear and generalized 

inear models ( −0 . 47 and 0.19 respectively), these coefficients are 

ar from significant. 

The model displayed in Table 2 takes into account the interac- 

ion between the model choice and the usage of imaging features. 

hese results show that linear models perform significantly worse 

han other models (coefficient = −8 . 11 , p = 0 . 001 ), however the

nteraction between linear models and imaging features is signifi- 

antly positive (coefficient = 7.85, p = 0 . 0 0 06 ); using imaging fea-

ures therefore leads to a significant increase in performance when 

sing a linear model. Similar conclusions can be drawn from the 

nteraction between generalized linear model and imaging features 

coefficient = 4.41, p = 0 . 04 ), whereas this effect is not significant

or non-linear models (coefficient = 2.13, p = 0 . 4 ). By combining 

he different coefficients, one can see that the best results are ob- 

ained using non-linear models. In this case, the use of imaging 

eature does not significantly impact performance. A possible ex- 

lanation is that non-linear models are more powerful and better 

everage the information contained in non-imaging data, whereas 

inear and generalized-linear models have a lower performance 

n non-imaging data. They therefore benefit from the addition of 

maging data, leading to a performance similar to the one obtained 

sing non-linear models. 



M. Ansart, S. Epelbaum, G. Bassignana et al. Medical Image Analysis 67 (2021) 101848 

Table 2 

Impact of method characteristics, taking into account the interaction between the model type and the use of imaging features. 

This table shows the coefficients obtained using the linear mixed-effect model described in Section 2.4.1 on all experiments, the 

associated p -values and corrected p -values. The last columns shows the number of experiments using the given characteristic, 

out of the 120 experiments included in the model. Benjamini-Hochberg procedure was applied to get corrected p -values. co- 

eff.:coefficient of the characteristics in the mixed effect model; APOE: Apolipoprotein E; ADNI: Alzheimer’s Disease Neuroimaging 

Initiative; NA: not applicable. 

Characteristic coeff. p -value corrected p -value number of exp. 

intercept 78 0 0 NA 

linear model −8.1 1 ∗10 −03 5.5 ∗10 −03 23 

generalized linear model −3.7 0.12 0.25 28 

non linear model −0.13 0.96 0.96 50 

imaging features −1.6 0.42 0.52 94 

cognitive features 2 0.028 0.073 53 

socio-demographic features and APOE 2.4 0.012 0.04 49 

biomarkers 0.92 0.28 0.45 19 

other features 0.87 0.31 0.45 12 

longitudinal 0.35 0.72 0.82 13 

ADNI −1.42 0.26 0.45 106 

number of subjects −0.066 0.96 0.96 NA 

interaction: linear model and imaging features 7.85 5.8 ∗10 −04 4.6 ∗10 −03 19 

interaction: generalized linear model and imaging features 4.41 0.036 0.083 21 

interaction: non linear model and imaging features 2.13 0.41 0.52 38 

individual intercept 2.27 8.6 ∗10 −03 0.034 NA 
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Fig. 3. Relationship between the AUC (area under the ROC curve) and the number 

of individuals. The black dotted lines represent the upper and lower limits. 
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.5. Other methodological characteristics 

One could expect the performance to increase when the data 

et size increases, however we find that the effect of the number 

f subjects is not significant (coefficient = −0 . 39 , p = 0 . 76 ). The

mpact of data set size is further investigated in Section 5.1.2 . 

The impact of using the ADNI data set is not significant (co- 

fficient = 0.011, p = 0 . 995 ). This finding is mitigated by the fact

hat our results slightly vary when using all experiments or only 

he ADNI experiment. As only 14 included experiments do not use 

he ADNI database it is difficult to estimate the impact of its usage 

ndependently from the other characteristics. 

Although we used a hierarchical grouping of the variables in 

rder to have more statistical power, few p -values and fewer cor- 

ected p -values are significant. This small number of significant ef- 

ects means that the variance of the reported performance mea- 

ures is high compared to the effect sizes. 

. Design of the decision support system and methodological 

ssues 

.1. Identified issues 

.1.1. Lack or misuse of test data 

The lack of a test data set is observed in 7.3% of experiments. 

n 16% of articles using feature selection, it is performed on the 

hole data set, and 8% of articles do not describe this step well 

nough to draw conclusions. Other data leakage (use of the test 

et for decision making) is identified in 8% of experiments, and is 

nclear for 4%. 

Overall, 26.5% of articles use the test set in the training pro- 

ess, to train the algorithm, choose the features or tune the 

arameters. This issue, and in particular performing feature se- 

ection on the whole data set, has also been pointed out by 

rbabshirani et al. (2017) in the context of brain disorder predic- 

ion. 

.1.2. Performance as a function of data set size 

We plotted the AUC against the number of individuals for each 

xperiment in Fig. 3 , with the colored dots representing experi- 

ents with identified issues. The colored dots show that there is 

 higher prevalence of studies with identified issues among high- 

erformance studies: a methodological issue has been identified in 
7 
8.5% of experiments with an AUC below 75%, whereas this propor- 

ion rises to 36.4% for experiments with an AUC of 75% or higher 

significant difference, with p = 0 . 006 ). 

We can observe an upper-limit (shown in dashed line) de- 

reasing when the number of individuals increases, suggesting that 

igh-performance achieved with a small number of subjects might 

e due to overfitting. This phenomenon has already been identified 

y Arbabshirani et al. (2017) and Varoquaux (2018) regarding the 

se of neuroimaging for brain disorders. 

A lower limit is also visible, with the AUC increasing with the 

umber of individuals. This may reflect the fact that, on average, 

ethods generalize better when correctly trained on larger data 

ets. But it might also suggest that it is harder to publish a method 

ith a relatively low performance if it has been trained on a large 

umber of subjects, such a paper being then considered as re- 

orting a negative result. Within papers also, authors tend to fo- 

us on their best performing method, and rarely explain what they 

earned to achieve this. The machine learning field has the chance 

o have simple metrics, such as AUC or accuracy, to compare differ- 

nt methods on an objective basis. However, we believe that one 
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Fig. 4. Evolution of the performance with respect to the time to prediction. Box 

plots represent the accuracy reported in the articles using ADNI included in this 

review. The straight line represents the accuracy that we computed by predicting 

that all MCI subjects remain MCI, that is the proportion of MCI subjects in ADNI 

who remain MCI at the follow-up visit. The shaded area corresponds to the 90% 

confidence interval. Although some papers in the literature use a sub-set of ADNI 

and not all ADNI, this plot still shows that results reported in the literature do not 

out-perform the naive constant prediction for time-to-predictions smaller than 3 

years. This comparison is rarely done in the articles. 
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hould use such metrics wisely not to discourage the publication 

f innovative methodological works even if it does not yield imme- 

iately better prediction performance, and not to overshadow the 

eed to better understand why some methods work better than 

thers. 

As the number of subjects increases, the two lines seem to con- 

erge to an AUC of about 75%, which might represent the true per- 

ormance for current state-of-the-art methods. 

.1.3. Use of features of test subjects 

Feature embedding is performed on the whole data set in 6.8% 

f experiments, meaning that the features of the test individuals 

re used for feature embedding during the training phase. As the 

iagnosis of the test individuals is often not used for feature em- 

edding, as it is for feature selection, performing it on test indi- 

idual can be considered a less serious issue than for feature se- 

ection. It however requires to re-train the algorithm each time the 

rediction has to be made on a new individual, which is not suited 

or a use in clinical practice. 

.1.4. Use of the diagnosis date 

In 5.6% of the experiments, the date of AD diagnosis is used to 

elect the input visit of pMCI individuals, for training and testing. 

s explained in Section 2.3 , this practice can prevent the general- 

zation of the method to the clinical practice, as the progression 

ate of test individuals is by definition unknown. 

This type of experiments answers the question ”may one detect 

ome characteristics in the data of a MCI patient 3 years before the 

iagnosis which, at the same time, is rarely present in stable MCI 

ubjects?”. Which should not be confused with: ”can such charac- 

eristics predict that a MCI patient will progress to AD within the 

ext 3 years”. What misses to conclude about the predictive ability 

s to consider the MCI subjects who have the found characteristics 

nd count the proportion of them who will not develop AD within 

 years. 

This confusion typically occurred after the publication 

f Ding et al. (2018) . The paper attracted a great attention 

rom general media, including a post on Fox News ( Wooller, 2018 ), 

tating “Artificial intelligence can predict Alzheimer’s 6 years 

arlier than medics”. However, the authors state in the paper that 

final clinical diagnosis after all follow-up examinations was used 

s the ground truth label”, thus without any control of the follow- 

p periods that vary across subjects. Therefore, a patient may be 

onsidered as a true negative in this study, namely as a true stable 

CI subject, whereas this subject may have been followed for less 

han 6 years. There is no guarantee that this subject is not in fact 

 false negative for the prediction of diagnosis at 6 years. 

.1.5. Choice of time-to-prediction 

We found that 22.6% of experiments work on separating pMCI 

rom sMCI, regardless of their time to progression to dementia. We 

dvise against this practice, as the temporal horizon at which the 

ndividuals are likely to progress is an important information in 

linical practice. Methods predicting the exact progression dates, 

uch as what is asked in the Tadpole challenge ( Marinescu et al., 

018 ), should be favored over methods predicting the diagnosis at 

 given date. 

The other experiments have set a specific time to prediction, 

ften between 1 and 3 years, meaning that they intend to pre- 

ict the diagnosis of the individual at the end of this time in- 

erval. Fig. 4 shows the evolution of the accuracy of these meth- 

ds tested on ADNI with respect to the time to prediction. The 

ime to prediction did not have a significant effect on AUC, accu- 

acy, balanced accuracy, specificity nor sensitivity. Fig. 4 also shows 

he accuracy that one would get on ADNI when using a constant 
8 
rediction, that is predicting that all individuals stay MCI at fu- 

ure time points. The accuracy of this constant prediction has been 

omputed using the proportion of MCI remaining stable at each 

isit. We show that most methods predicting the progression to 

D within a short-term period smaller than 3 years do not per- 

orm better than this constant prediction. This finding is consistent 

ith results from the Tadpole challenge ( Marinescu et al., 2020 ), 

n which no participants significantly outperformed the constant 

rediction, to which a random noise was added, on prediction of 

ognitive scores within a 18 month period. We therefore advise to 

se a time to prediction of at least 3 years. For shorter time in- 

ervals the proportion of MCI individuals progressing to AD is so 

mall that predicting that all individuals remain stable gives a bet- 

er accuracy than most proposed methods. 

This fact also shows that the accuracy may be arbitrarily in- 

reased by using a cohort with a large proportion of stable sub- 

ects. The algorithm may then yield high accuracy by mimicking a 

onstant predictor. This effect may be alleviated by optimizing the 

alanced accuracy instead of the accuracy. 

.1.6. Problem formulation and data set choice 

A common theme that arises from the previous issues is that 

he methods are not always designed to be the most useful in clin- 

cal practice. It is for example true of methods that do not use a 

pecific time-to-prediction, or that use the date of AD diagnosis to 

elect the included visits. 

More generally, we think the most useful decision support sys- 

em should not only focus on Alzheimer’s disease but perform dif- 

erential diagnosis. Clinicians do not usually need to distinguish 

etween individuals who will develop AD and individuals who will 

ot develop any neurological disorder. They most likely need help 

o determine which disorder an MCI individual is likely to develop. 

nfortunately, no widely available data set allows the development 

ethods for differential diagnosis to date. Methods focusing on AD 

hould therefore target individuals who have already been identi- 

ed as at risk of developing AD, by providing insight on the date 

t which this conversion is likely to happen. Such methods could 

e trained on MCI subjects that are at risk to develop Alzheimer’s 

isease, defined for instance as the ones who have a MMSE of 27 

r smaller and are amyloid positive. In addition to being closer to 

hat can be expected in clinical practice, such data sets of at risk 

ubjects should include a larger proportion of pMCI, leading to a 

etter performance compared to the constant prediction. For ex- 

mple in ADNI, 71.6% of MCI subjects stay stable 2 years after in- 

lusion, whereas this proportion drops to 53.7% for MCI subjects 

ho are amyloid positive and have a MMSE of 27 or lower. Sim- 
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(

larly, one should think carefully of the possible other biases in- 

roduced by the selection of sMCI or pMCI sub-sets, for instance 

ias in age, gender or cognitive state. One choice is to match the 

wo sub-sets for these factors. This choice is justified for the de- 

ection of the features that are specific to the progressers and to 

he stable MCI. However, to analyze the performance of a decision 

upport system, one should better reproduce the biases within the 

opulation that will be tested by the system in a real case scenario. 

The diagnosis of Alzheimer’s disease highly depends on the 

linical practice, and varies greatly across sites and countries 

 Beach et al., 2012 ). Therefore, the short-term prediction of pro- 

ression to Alzheimer’s disease is unlikely to generalize well out- 

ide the well controlled environment of a research study. Studies 

n clinical data sets, such as performed in Archetti et al. (2019) re- 

arding the prediction of current diagnosis, could assess how these 

ethods would perform in clinical settings. An interesting alter- 

ative may be to predict the changes in the imaging or clinical 

iomarkers in time rather than the change in diagnosis, such as in 

oval et al. (2020) , Iddi et al. (2019) and Marinescu et al. (2020) . 

.2. Need to adhere to best practice guidelines 

Given the number of methodological issues that we found in 

he preparation of this review and that we have discussed above, 

e feel the need to list here several best practices recommenda- 

ions. 

We first list general guidelines to ensure best generalization of 

he method and limit the risk for overfitting, following Hastie et al. 

2009) , Bishop (2006) , Géron (2019) , Poldrack et al. (2019) : 

• Separate train and test data sets by using independent co- 

horts or, if not available, cross-validation. Following Hastie et al. 

(2009) , Varoquaux et al. (2017) , Borra and Di Ciaccio (2010) , 

Davison and Hinkley (1997) , Kohavi (1995) , guidelines for best 

practices recommend to favor k-fold, repeated k-fold and re- 

peated hold-out over leave-one-out method. 
• No element of the test data set, both labels and features, should 

be used except for performance evaluation. In particular, pa- 

rameter tuning should not be performed on test data, therefore 

nested cross-validation or train, validation and test splits should 

be used to tune the algorithm parameters. 
• Use a large data set or pool different cohorts to obtain a large 

data set. Fig. 3 shows that overfitting is reduced for more than 

300 subjects, at which point the maximum AUC seems to sta- 

bilize. This is concordant with results from Arbabshirani et al. 

(2017) , showing a similar point around 200 subjects. Similarly, 

Poldrack et al. (2019) recommends using data sets of at least 

several hundred subjects. 

We also compile a list of guidelines to carefully design the ex- 

eriments so that they could support the conclusion about the pre- 

ictive performance of the method which, in this particular con- 

ext, includes: 

• pre-registration of the time window within which one aims to 

predict conversion to AD, as we show that performance may 

greatly vary depending on the time-window and that no con- 

clusion could be drawn regarding the ability to predict the fu- 

ture without it, 
• definition of data sets that best reflect the use of the method 

in the clinical practice, for instance by selecting subjects that 

would be considered at risk of developing the disease rather 

than all possible subjects in ADNI, or by using sex ratio, distri- 

bution of age, cognitive state and other similar factors that best 

mimic the population characteristics that will be tested by the 

system. 
• systematic benchmark of the method against the prediction 

that the subjects will remain stable over time, as we show that 
9 
this naive method often outperforms proposed method with a 

time-to-prediction smaller than 3 years. 

. Conclusion 

We conducted a systematic and quantitative review on the au- 

omatic prediction of the evolution of clinical status of MCI individ- 

als. We reported results from 234 experiments coming from 111 

rticles. We showed that studies using cognitive variables or FDG 

ET reported significantly better results than studies that did not, 

nd that including other feature types does not significantly im- 

rove performance compared to using cognition or FDG PET alone. 

hese modalities should be further explored, cognition because it 

an be easily collected in clinical routine, and FDG PET for the 

nterest it might represent for the imaging community and for 

ncreasing our understanding of the disease. On the other hand, 

e showed that using solely T1 MRI yields a significantly lower 

erformance, despite the great number of methods developed for 

his imaging modality. These findings call into question the role of 

maging, and more particularly of MRI, for the prediction of the 

rogression of MCI individuals to dementia. In light of this review, 

e believe that one should give higher priority to other modalities. 

ore specific cognitive tests could be created, and the impact of 

sing digitized tests, that can be frequently used at home by the 

atients themselves, should be studied. The creation of digitized 

ests for clinical routine, such as proposed by Souillard-Mandar 

t al. (2016) , Müller et al. (2017) , Schinle et al. (2018) is a first step

n this direction. 

We identified several key points that should be checked when 

reating a method which aims at being used as a clinical decision 

upport. When possible, an independent test set should be used 

o evaluate the performance of the method, otherwise a test set 

an be separated by carefully splitting the cohort. In any case, the 

est individuals should not be used to make decisions regarding the 

ethod, such as the selection of the features or parameter tuning. 

he time window in which one aims at predicting the progression 

o AD should be pre-registered, as the temporal horizon at which 

n individual is likely to progress to AD is a useful information 

or clinicians. Alzheimer’s disease being a very slowly progressive 

isease, algorithm performance should be systematically compared 

ith the prediction that no change will occur in the future. We 

ave shown indeed that the constant prediction may yield very 

igh performance depending on the time frame of the prediction 

nd the composition of the cohort. Finally, the cohort on which 

he method is tested should be carefully chosen and defined, so 

s to reflect the future use in clinical practice as best as possible. 

e noticed that there is often a confusion between two different 

bjectives : understanding the specificities of subjects who will or 

ill not convert to dementia on the one hand, and predicting the 

rogression to dementia on the other hand. Experiments are often 

esigned to address the first objective, but results are then mis- 

nterpreted in relation with the second objective. Addressing each 

bjective requires indeed a rather different experimental design. 

Following the guidelines will help to design better systems that 

ould eventually lead to similar results in real life. In any case, 

he final evaluation of such systems will be done in a prospective 

anner, either in the framework of a challenge like the TADPOLE 

hallenge ( Marinescu et al., 2018; 2019; 2020 ), or even better in a 

rospective clinical trial ( Bruun et al., 2019 ). 

This review focused on the prediction of progression to de- 

entia, as this problem has, by far, attracted most attention from 

he scientific community. Nevertheless, predicting the future val- 

es of the biomarkers or the images may be of greater interest for 

uch clinical decision support systems to be adopted in practice 

 Marinescu et al., 2020; Koval et al., 2020; Ansart, 2019 ). 
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